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Abstract

Let Q(x) = Q(x1, xg, ..., x,) be a quadratic form with integer coefficients and

p be an odd prime. Let V = Vg = V), denote the set of zeros of Q(x) in Zj,

and |V| denotes the cardinality of V. Set ¢(V,,y) = erV ep(x-y) for
y # 0 and (I)(Vp, y) = |Vp| - pn_l for y = 0. In this paper, we give an upper

bound for the number of integer solutions of the congruence @(x) = 0(mod p).

1. Introduction

Let Q(x) = Q(xq, x9, ..., x,,) = zlsisjsnaifxixj be a quadratic form
with integer coefficients in n-variables, and V = V,(Q) be the algebraic

subset of ZZ defined by the equation
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Q(x) = O(mod p), ey

and B be the box defined by
B ={x e Z}|a;<x; < a; + mj, 1<i<n}, (2)

where a;, m; € Z, and 0 <m; < p for 1<i<n. Let |B| denote the
cardinality of the box B. We call the box a cube of size m, if m; = m for
all i. Suppose that n is even and det Ag # O(mod p), where Ag 1s nxn
defining matrix for @(x). Let A, (@) = ((~ l)n/2 detAg/p) if ptdetAg
and A,(Q) =0 if p|detAg, where (./ p) denotes the Legendre symbol.
Let @"(x) be the inverse of the matrix representing @(x), (mod p). In

this paper, we are interested in the following type of problems:

Problem 1. For a box B with sides of arbitrary lengths, how large

must its cardinality be in order to guarantee that B contains a solution of
1)?

Problem 2. Determine |B V), 7|, the number of integer solutions of
(1) contained in B?

For addressing these two problems, we shall use Fourier series and
exponential sums. We shall obtain

Theorem 1. Let p be an odd prime, and V,, = V, 7(Q) be the set of
integer solutions of the congruence (1). Then for any box B of type (2),

" @+N3p”/2], if A=+1,

BNV, z|< P

3)
2n+1(%+NBpn/2j, if A=-1,

where

- Ti(5])
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If V is the set of zeros of a “nonsingular” quadratic form Q(x), then

one can show that
B
VNBl = % +0 (p"/z(log p)”), (5)

for any box B (see [2]). It is apparent from (5) that [V 1 B| is nonempty
provided

|B| > p/ D+ (1og pY*.
For any x,y in Z?,, we let x-y denote the ordinary dot product,
X'y = Zzlzlxiyi. For any x e Z,, let e,(x) = e2™*/P We use the
abbreviation ZX: erzg for complete sums. The key ingredient in

obtaining the identity in (5) is a uniform upper bound on the function

Zep(x “y), for y # 0,
(I)(V’ Y) =3xeV (6)
V| - p" L, for y = 0.

In order to show that B () V is nonempty, we can proceed as follows:
Let a(x) be a complex valued function on Z such that a(x)<O0 for all x
not in B. If we can show that erva(x) > 0, then it will follow that
BNV is nonempty. Now o(x) has a finite Fourier expansion

afx) = 3 aly)e,(y - %),
y

where

a(y) = p" ) a(x)e,(-y - %),

for all y € Z7. Thus

D ax)= Y D aly)e,(y %)

xeV xeV y
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=Y aly)) ep(y - x)

y xeV
= a(0)|V] + Za(y)z ep(y - x).
y#0 xeV

Since a(0) = p_nzxa(x), we obtain
Do) = p VY a(x)+ Y a)e(V, y), (7
xeV X y#0

where ¢(V, y) is defined by (6). A variation of (7) that is sometimes more

useful is

D ax) = p Y a)+ Y a)eV, y), ®

xeV b y

which is obtained from (6) by noticing that [V| = ¢(V, 0) + p" 1, whence

D ax) = a)[6(V, 0)+ p" ]+ D aly)o(V, y)

xeV y#0

= p"a0)+ D aly)s(V, y).

y

Equations (7) and (8) express the “incomplete” sum erva(x) as a
fraction of the “complete” sum Zxa(x) plus an error term. In general,
V| ~ p™ ! so that the fractions in the two equations are about the same.

In fact, if V is defined by a “nonsingular’ quadratic form @(x), then

V] = p" + O(p™) (thatis, [§(V, 0)|< p™).

To show that erva(x) is positive, it suffices to show that the error
term is smaller in absolute value than the (positive) main term on the
right-hand side of (7) or (8). One tries to make an optimal choice of o(x)

in order to minimize the error term. Special cases of (7) and (8) have

appeared a number of times in the literature for different types of
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algebraic sets V; Chalk [1], Tietdviinen [8], and Myerson [7]. The first

case treated was to let a(x) be the characteristic function yg(x) of a

subset S of Z"

p» Whence (8) gives rise to formulas of the type

VNS = p_1|S| + Error.

Equation (5) is obtained in this manner. Particular attention has been
given to the case where S = B, a box of points in ZZ. Another popular
choice for o is let it be a convolution of two characteristic functions,

o =yg *xr for S, T < Z}. We recall that if a(x) and p(x) are complex

valued functions defined on Z"

»» then the convolution of a(x) and B(x)

written o * B(x), is defined by

a*Bx) = D apBx-u)= Y a@B),

u+v=x

for x e 2. If we take a(x)=yg *xr(x), then it is clear from the
definition that a(x) is the number of ways of expressing x as a sum s + t

with s € S and t € T. Moreover, (S + T)\V is nonempty, if and only if
erva(x) > 0.

We make use of a number of basic properties of finite Fourier series,

which are listed below. They are based on the orthogonality relationship

Z ep(X’Y) =

XEZZ O, if y # 0,

p", if y=0,

and can be routinely checked. By viewing ZZ as a Z-module, the Gauss
sum

Sp@ ¥) = D ep(Qx)+y-x),

n
erp
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is well defined whether we take y € Z" or y € Z}. Let o(x) and B(x) be

complex valued functions on ZZ with Fourier expansions

a(x) = D alyep(x-y), Bx)= D b(y)ey(x-y).
y

y

Then

o *B(x) = D p"aly)b(y)ep(x - y), ©
y

ap(®) = a(x)p(x) = D (@ * b)(y)e,(x -y). 10)
y

D (a*p)x) = (Z a<x>] [Z B(x)} (11
> o B) () <[Z|a<x>@ [Zm(x»} (12)

D la@) = p" Y o). (13)
y X

The last identity is Parseval’s equality.
2. Cochrane’s Estimate

Let Q(x)=Q(xq, x9, ..., x,) be a quadratic form with integer

coefficients and p be an odd prime. Consider the congruence

Q(x) = O(mod p).
Using identities for the Gauss sum S = Zle ep(owc2 + bx ), one obtains
Lemma 1 (see, e.g., [3], Lemma 1). When n is even and A = £1,
Ap-Dp™P i Q') =0,

—apA if @ (y) =0,

(I)(V’ y) =
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where Q" is the quadratic form associated with the inverse of the matrix
for @(mod p).

Back to (8), we saw the identity

D ax)=p Y ax)+ Y aly)eV, y).

xeV y#0
Inserting the value ¢(V, y) in Lemma 1 yields (see, e.g., [4]).

Lemma 2 (The fundamental identity). Suppose n is even. For any
complex valued a(x) on Z}, and any quadratic form Q(x) with A,(Q)

= 11,

D a®) = p Y a®) - AaO)pHT 4 ap? N aly). (4

x<V x Q (v)=0
|
main term

errorterms

Let our set B be a box of points of the type given in (2)
B={xeZ":q;<x; <a; +m;, 1<i<n},

and view this box as a subset of Z) and let yz be its characteristic

function with Fourier expansion yz(x) = Zy ap(y)ep(x - y). Then for any
y € Zj,

o) = 577 T [ 25 - L)y | St )

AR & S WS
where the term in the product is taken to be m; if y; = 0. We apply the

fundamental identity with o(x)= yp, * xB, the convolution of xp,,

where B; and By are boxes such that B; + B, 5. Now we have the

following two cases:
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(1) A =+1. In this case, we let B be centered at origin and take

B, = B, = éB. Then the coefficients a(y) are positive reals, so the

fundamental identity gives us

Z a(x) > 1 Zq(x) - a(O)p(”/Q)_l

xeV p

B, |* _
_ | 1| _|B1|p(n/2) 1.
p
We see that erva(x) > 0, provided |B;| > p"/2, that is, |B| > 2npn/2.

Since o is supported on B, we have BNV = ¢.

(2) A = -1. In this case, we need to estimate ZQ*(y)zoa(y), but we

do not insist on B being centered at the origin.

A key tool for estimating the error term ZQ* (y):oa(Y) is a good

upper bound on |V N B| the number of solutions of (1) with x € B. First
[5] establishes

Lemma 3 ([5], Lemma 1). Let S be a closed star-shaped region about
the origin in R"™ with |x| = max|x;| < p/2 for all x € S. [A region of
points S in R" is said to be star-shaped about the origin, if for any point
P in S the line segment joining P and the origin is contained in S.] For
0<y<1, let vS=1{yx|xeS}. Let V < Z" be the set of zeros modp of

any form in n-variables over Z. Then

|ysmV|<1+1jy|sr1V|.

Then using the fundamental identity (14) and Lemma 3, one obtains

Lemma 4 ([5], Lemma 2). Suppose that n>4 is even, A,(€) = -1 and
V =V,(Q). Let B be a box of points of the type
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B ={y eZp||yl|<B;, 1<i<n},
for some nonnegative integers B; < p/2,1<i<n. Lett be a given positive

2
—2n-t 2
n npn/

integer. If B; < 23ty for 1<i<n, or B > 27" , then

|B N Vl < 2n2+(3+t)n+1 @ + Lp(n/2)—1.
p 9

A second appeal to the fundamental identity yields

Lemma 5 ([5], Theorem 2). Suppose that n>4 1is even,

p>24%6102""2 qnd that A,Q) =-1. If m; >25"4710" for 1<i<n, and

2
8| > 237 +4n+210n,n /2 then B contains a nonzero solution of (1).

3. Proof of Theorem 1 when A = +1

Let B be the box of points in Z" given by (2)
Bz{er”Iaisxi<ai+mi, 1<i<n},
where m; =q;p+r1;,0<r, <p, and q;,r; € Z. Thus, the number of

points in B (cardinality of B) is |B| = H?:l m;. As we mentioned before

our interest in this paper is determining the number of integral solutions
of

Q(x) = 0(mod p),
with x € B. First, we treat the case where all m; < p. In this case, we can
view the box B in (2) as a subset of ZZ and let ypz be its characteristic
function with Fourier expansion yz(x) = Zy ap(y)ep(x - y). Then for any
y € Zj,

n

lag(y)l = p™"
i=

sin nm;y; / p
sinmy; / p
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Lemma 6. Let B be a box of type (1) centered at the origin with all
m; <p, and V, = V,(Q) denote to the set of solutions of (1) in ZY. If

Ag = +1, then
(BN Vp|<2"(% + p”/QJ.

Proof. Since Ag = +1, the fundamental identity (modulo p) is

D o) =p ax) - a0+ p2 N aly), (15)

xeVp Q*(y)=0

by Lemma 2. Set a = yg * x5, the convolution of x5 with itself, i.e.,

a(x) = ZXB(U-)XB(X -u)

Z xBWyp(v)

u+v=x

D> apmeyu-y)Y ap@le,( - (x - )
u y z

=YD asy)as@)e,(z-x)D ep(u- (v - 2))
y =z u
= p" Y a(y)ey(y - %),
y

so that the Fourier coefficients a(y) of a(x) are p"aZ(y). Since B is
centered at the origin of the Fourier coefficients ag(y) are all real. Thus
the coefficients a(y) of yp * xg are all positive. By using Parseval’s

identity (13),
D la)| = 2" Y las@)F = Y 1E) = |B. (16)
y y y

Next by (15), we observe that
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> aE®)<p Y o)+ p"?Y aly)
X y

erp

= 'Y (s * s) @)+ PP Y Jal)]-
X y

Then, using the identity (12) and (16), the above is

Z a(x) < p‘l{(;w(u)] : {;XB(V)H + p"/?|B|

erp

= p|B||B| + p"/?|B

2
= % + p"?|B|. 17)

On the other hand, for any x € B, we claim that

o(x) = x5 * xp(x)=>27"8). (18)

To see this, we shall argue as follows. Let I = [-M, M] be an interval

symmetric about 0. We need first to prove that for x € I,
1 1
X1 * Xl(x)>§|1| = 5(2M +1). (19)

To this end, we have to count the number of points (u, v) € I x I such
that u +v = x. We have two cases. If —M <x <0, then the number of
points is 2M + x + 1, specifically x = u + (x —u),- M <u<x + M. Thus

plainly the total number of the points is greater than or equal to
2M - M +1=M+1>2]1)

If 0<x<M, then we have 2M —x +1 points, specifically x = u +
(x —u), x - M<u<M, and thus once again the total number of the

points is greater than or equal to
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2M - M +1=M+1>1]1)
The two cases imply (19). Thus, it follows immediately by (19), that for
xelyx...xI, =B,
n n 1
a(x) = 1_1[%1,- * XIi(X)>H§|Ii| =278,
1= 1=

which is (18). Now we return to complete proving the lemma. From (18),
it follows that

D a®)z > 278 = 27BBNV,|. (20)

xeV, xeV,NB

Thus, putting (17) and (20) together and simplifying, we conclude that

The lemma is thereby proved. O

Lemma 6 is stated for boxes centered at the origin. In the next
lemma, we will drop this hypothesis and prove the lemma for arbitrary

boxes. We will get the same result.
Lemma 7. Let B be any box of type (2) with all m;<p and V, =

V,(Q) denote to the set of solutions of (1) in ZY,. If Ag = +1, then
|B m Vp|<2n(@+ pn/QJ'
p
Proof. Again as Ag = +1, the fundamental identity (modulo p) is as

(15)
D a®) = p 'Y ax)-a@p™H T+ p2 N aly).

x<Vp x Q" (y)=0

Let a(x) = x5 * x5, where B' = B —¢. The value c is chosen such that

B' is “nearly” centered at the origin
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m; -1
c; = ai-+ 2 .

Then
> a(x) = |8|B] = |87, (21)
X
a0)= > > 1<8), (22)
ueBuveB'
u+v=0

a(y) = p"ag(y)ap(y).

Thus, using the Cauchy-Schwartz inequality (see, e.g., [6]) and Parseval’s
identity (13), we obtain

D la)l = " las)ag (v)
y y

1/2 1/2
<p" Z|a5(y)|2] [ng(yﬂ

y y'

1/2

1/2
n| 1 2 (x 1 2 (x
<p o Zy:XB( )] {p” Zy:XB( )J

= 1B["281/2 = |5]. 23)

Thus, by the fundamental identity (15) and (21), (22), (23), if A = +1,

D, ax)<p Y a)+ "2 Y faly)

xeVp *y
Q@ (v)=0

<o Y@+ p"?Y Jaly)
x y

2
< % + p"?|8|. (24)

Now we claim that
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D a®)> > 278 = 278V, NB|. (25)

xeV, xeV,NB
To see (25), we are going to argue as follows. Let

I = {ai,ai+1,...,ai +m; —1}.

m; —

Then if m; is odd, ¢; = a; + L , and hence

.1 .1
F:I—q:{—m‘ ,m,mé }

Thus for any x € I,

ZZD mi2+1>%.

uelvel'
u+v=x

If m; is even, so that ¢; = a; + % -1, then

Hence for any x € I,

S

uelvel’
u+v=x

So
o(x) = 15 *xp(x)>27"8],
and the claim follows. Now we combine (24) and (25), we get

B Vp|<2"(% -2

which completes the proof of Lemma 7. O

Next we consider larger boxes, where the m; may exceed p. Let Np

as given by (4)
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n
ms
Ny = — | +1.
=TS
1=1
Proof of Theorem 1 when A =+1. Partition B into N = Ng

smaller boxes B;,
B=B,UByU-UBy,

where each B; has all of its edge lengths < p. Thus Lemma 7 can be
applied to each B;. We obtain

N
IBNV,z| = D BNV,
i=1

&, |Bil 2
<22n(—l + pn/ )
AN
N
n
_ %Z|Bi| + N2 p?
o1

B|
= 2”('— + N, ”/2j.
» p
So the proof of (3) when A = +1 is complete.

4. Proof of Theorem 1 when A = -1

We start by noticing that Lemma 7 could be rewritten in this case as

follows:
Lemma 8. Let B be any box of type (2) with all m; < p, and Vp =

V,(Q) denote to the set of solutions of (1) in Z},. If A, = -1, then

B| 2
BNV <2’”1(—| + n/ ]
| pl P P
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Proof. The proof is similar to the proof of Lemma 7. The fundamental
identity modulo p when A, = -1 is given by
D a®) =Y ax)+ a0/ - p 2 N aly).  (26)
xeVp X Q" (v)=0

Let o be as given in the proof of Lemma 7. By (26), (21), (22), and (23),

we have

IBE i1y, g2
2, o)< =+ pEB| 4 p ;|a(y>|

p

2
<ﬂ + p"/2|B| (l + 1)
p b

2
<%+2p”/2|l’>’|.

But, in the proof of Lemma 7, we proved that

Dax)> Y 27 = 27B|[BNV,|.

erp erp NB

Thus, it follows
BNV,|< zn“(% . pnﬂj,

which is the assertion of the lemma. O

Proof of Theorem 1 when A = —1. We proceed just as in the proof

of the case A = +1. Partition B into N = Ny smaller boxes B;. This

means
B =B, UBy U---UBy,

where each B; has all of its edge lengths < p. Apply Lemma 8 to each

B;, we thus obtain
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N
IBNV,zl =D BNV,
=1

N

B:

i=1

2n+1 N

> > IB;|+ N2"p"/*
i1

_ 2n+1(@+ an/QJ,
p

finishing the proof of (3).
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